Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894714

RESUMO

C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of the group of plants known as quelites, which are dark leafy greens widely consumed in Mexico. This study aimed to evaluate the impact of two drying procedures (oven drying and freeze-drying/lyophilization) on the polyphenolic composition, antioxidant capacity, and proximal chemical analysis of C. berlandieri leaves and inflorescences (raw or boiled). The results indicated that the raw freeze-dried samples had higher amounts (p < 0.05) of total phenolic compounds, total flavonoids, and antioxidant capacity, mainly in the inflorescence. The oven-dried samples showed an increased concentration of polyphenols after boiling, while the lyophilized samples showed a slightly decreased concentration. The drying process was observed to have little impact on the proximal chemical composition. Quantification by UPLC-DAD-ESI-QToF/MS identified up to 23 individual phenolic compounds, with freeze-dried samples showing higher amounts of individual compounds compared with oven-dried. Procyanidin B2 was found exclusively in the inflorescences. The inflorescences have a higher content of phenolic compounds and greater antioxidant capacity than the leaves. Regardless of the drying process, the leaves and inflorescences of C. berlandieri contain an interesting variety of phenolic compounds that may have beneficial effects on health.


Assuntos
Antioxidantes , Inflorescência , Antioxidantes/química , Inflorescência/química , Dessecação/métodos , Fenóis/química , Liofilização
2.
Plants (Basel) ; 12(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896032

RESUMO

Porophyllum ruderale (P. ruderale) is a well-known Mexican plant from the group of "Quelites", widely consumed plant species used for several food and medicinal purposes. As the production is very heterogeneous and the diverse agroclimatic conditions significantly impact the plant's phytochemical composition, this research aimed to compare the phenolic compound composition and the antioxidant capacity of the P. ruderale plant from three different collection sites (Queretaro, Landa de Matamoros, and Arroyo Seco) in the State of Queretaro (Mexico). Plants collected from Queretaro displayed the lowest total phenolic compounds, flavonoids, and condensed tannins, reflected in a lower antioxidant capacity (DPPH, FRAP, ABTS), compared to the other collection places. Flavones (epicatechin and epigallocatechin gallate) were the most abundant (36.1-195.2 µg equivalents/g) phenolics quantified by HPLC-DAD, while 31 compounds were identified by UHPLC-DAD-QToF/MS-ESI. Most compounds were linked to biological mechanisms related to the antioxidant properties of the leaves. A PCA analysis clustered Landa de Matamoros and Arroyo Seco into two groups based on flavones, hydroxybenzoic acids, the antioxidant capacity (ABTS and DPPH), and total phenolic compounds, the main contributors to its variation. The results indicated contrasting differences in the polyphenolic composition of collected P. ruderale in Queretaro, suggesting the need to standardize and select plants with favorable agroclimatic conditions to obtain desirable polyphenolic compositions while displaying potential health benefits.

3.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653904

RESUMO

Cnidoscolus aconitifolius (CA) and Porophyllum ruderale (PR) are representative edible plants that are a traditional food source in Mexico. This research aimed to analyze the phytochemical composition and untargeted metabolomics analysis of CA and PR and evaluate their antiproliferative effect in vitro. The phytochemical composition (UPLC-DAD-QToF/MS-ESI) identified up to 38 polyphenols and selected organic acids that were clustered by the untargeted metabolomics in functional activities linked to indolizidines, pyridines, and organic acids. Compared with PR, CA displayed a higher reduction in the metabolic activity of human SW480 colon adenocarcinoma cells (LC50: 10.65 mg/mL), and both extracts increased the total apoptotic cells and arrested cell cycle at G0/G1 phase. PR increased mRNA Apc gene expression, whereas both extracts reduced mRNA Kras expression. Rutin/epigallocatechin gallate displayed the highest affinity to APC and K-RAS proteins in silico. Further research is needed to experiment on other cell lines. Results suggested that CA and PR are polyphenol-rich plant sources exhibiting antiproliferative effects in vitro.

4.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571383

RESUMO

Maternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning. 16SrRNA sequencing of feces and bioinformatics analysis was performed to evaluate gut microbiota in PRL receptor-null mice (Prlr-KO) at weaning (postnatal day 21). The normalized colon and cecal weights were higher and lower, respectively, in the Prlr-KO mice relative to the wild-type mice (Prlr-WT). Relative abundances (Simpson Evenness Index), phylogenetic diversity, and bacterial concentrations were lower in the Prlr-KO mice. Eleven bacteria species out of 470 differed between the Prlr-KO and Prlr-WT mice, with two genera (Anaerotruncus and Lachnospiraceae) related to metabolic disease development being the most common in the Prlr-KO mice. A higher metabolism of terpenoids and polyketides was predicted in the Prlr-KO mice compared to the Prlr-WT mice, and these metabolites had antimicrobial properties and were present in microbe-associated pathogenicity. We concluded that the absence of the PRL receptor altered gut microbiota, resulting in lower abundance and richness, which could contribute to metabolic disease development.


Assuntos
Microbioma Gastrointestinal , Receptores da Prolactina , Camundongos , Animais , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Desmame , Filogenia , Prolactina , Camundongos Knockout
5.
Food Chem Toxicol ; 177: 113829, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225033

RESUMO

This research aimed to chemically synthesize and evaluate the antiproliferative and anti-inflammatory potential of ozopromide (OPC), a novel compound recently isolated from O. vulgaris ink. After chemical synthesis, OPC structural characterization was confirmed by COSY2D, FTIR, and C-/H-NMR. OPC inhibited the growth of human breast (MDA-MB-231), prostate (22Rv1), cervix (HeLa), and lung (A549) cancerous cells, being the highest effect on the latter (IC50: 53.70 µM). As confirmed by flow cytometry, OPC induced typical apoptosis-derived morphological features on A549 cells, mostly at early and late apoptosis stages. OPC generated a dose-dependent effect inhibiting IL-6 and IL-8 on LPS-stimulated peripheral mononuclear cells (PBMCs). A major affinity of OPC to Akt-1 and Bcl-2 proteins in silico agreed with the observed pro-apoptotic mechanisms. Results suggested that OPC has the potential to alleviate inflammation and be further studied for anticancer activity. Marine-derived food products such as ink contains bioactive metabolites exhibiting potential health benefits.


Assuntos
Antineoplásicos , Neoplasias , Octopodiformes , Masculino , Feminino , Animais , Humanos , Antineoplásicos/química , Linhagem Celular Tumoral , Células A549 , Tinta , Apoptose , Proliferação de Células
6.
J Vis Exp ; (192)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876927

RESUMO

Insulin resistance is a reduced effect of insulin on its target cells, usually derived from decreased insulin receptor signaling. Insulin resistance contributes to the development of type 2 diabetes (T2D) and other obesity-derived diseases of high prevalence worldwide. Therefore, understanding the mechanisms underlying insulin resistance is of great relevance. Several models have been used to study insulin resistance both in vivo and in vitro; primary adipocytes represent an attractive option to study the mechanisms of insulin resistance and identify molecules that counteract this condition and the molecular targets of insulin-sensitizing drugs. Here, we have established an insulin resistance model using primary adipocytes in culture treated with tumor necrosis factor-α (TNF-α). Adipocyte precursor cells (APCs), isolated from collagenase-digested mouse subcutaneous adipose tissue by magnetic cell separation technology, are differentiated into primary adipocytes. Insulin resistance is then induced by treatment with TNF-α, a proinflammatory cytokine that reduces the tyrosine phosphorylation/activation of members of the insulin signaling cascade. Decreased phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS-1), and protein kinase B (AKT) are quantified by western blot. This method provides an excellent tool to study the mechanisms mediating insulin resistance in adipose tissue.


Assuntos
Adipócitos , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Insulina , Receptor de Insulina , Fator de Necrose Tumoral alfa , Diferenciação Celular , Cultura Primária de Células
7.
Mol Cell Endocrinol ; 559: 111810, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374835

RESUMO

Obesity is a modern pandemic with negative consequences in women's reproductive health. Women with overweight and obesity can develop mammary gland alterations that unable exclusive breastfeeding. Obesity associates with a disturbed lactating mammary gland endocrine environment including a decreased action of the hormone prolactin (PRL), the master regulator of lactation. The PRL receptor and the action of PRL are reduced in the mammary gland of lactating rodents fed an obesogenic diet and are contributing factors to impaired lactation in obesity. Also, treatment with PRL improves milk yield in women with lactation insufficiency. This review focuses on the impact of diet-induced obesity in the lactating mammary gland and how obesity impairs the lactogenic action of PRL. Although obesity alters lactation performance in humans and rodents, the responsible mechanisms have been mainly addressed in rodents.


Assuntos
Glândulas Mamárias Humanas , Feminino , Humanos , Animais , Prolactina , Lactação , Mama , Obesidade , Glândulas Mamárias Animais
8.
Artigo em Inglês | MEDLINE | ID: mdl-36429638

RESUMO

Cruciferous vegetables such as cauliflower and radish contain isothiocyanates exhibiting chemoprotective effects in vitro and in vivo. This research aimed to assess the impact of cauliflower (CIE) and radish (RIE) isothiocyanate extracts on the metabolic activity, intracellular reactive oxygen species (ROS), and LDH production of selected human colorectal adenocarcinoma cells (HCT116 and HT-29 for early and late colon cancer development, respectively). Non-cancerous colon cells (CCD-33Co) were used as a cytotoxicity control. The CIE samples displayed the highest allyl isothiocyanate (AITC: 12.55 µg/g) contents, whereas RIE was the most abundant in benzyl isothiocyanate (BITC: 15.35 µg/g). Both extracts effectively inhibited HCT116 and HT-29 metabolic activity, but the CIE impact was higher than that of RIE on HCT116 (IC50: 0.56 mg/mL). Assays using the half-inhibitory concentrations (IC50) of all treatments, including AITC and BITC, displayed increased (p < 0.05) LDH (absorbance: 0.25-0.40 nm) and ROS release (1190-1697 relative fluorescence units) in both cell lines. BITC showed the highest in silico binding affinity with all the tested colorectal cancer molecular markers (NF-kB, ß-catenin, and NRF2-NFE2). The theoretical evaluation of AITC and BITC bioavailability showed high values for both compounds. The results indicate that CIE and RIE extracts display chemopreventive effects in vitro, but additional experiments are needed to validate their effects.


Assuntos
Brassica , Neoplasias Colorretais , Raphanus , Humanos , Espécies Reativas de Oxigênio , Botrytis , Isotiocianatos/farmacologia , Neoplasias Colorretais/tratamento farmacológico
9.
Pharmaceutics ; 14(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297503

RESUMO

Gold nanoparticles (AuNPs) are promising nanomaterials exhibiting anti-cancer effects. Green AuNPs synthesis using plant extracts can be used to achieve stable and beneficial nanoparticles due to their content of bioactive compounds. This research aimed to synthesize and evaluate the antiproliferative and caspase-3 activity induction of green AuNPs synthesized with common mullein (V. thapsus) flowers (AuNPsME) and castor bean (R. communis) leaves (AuNPsCE) ethanolic extracts in human HT29 and SW480 colorectal cancer cells. Their effect was compared with chemically synthesized AuNPs (AuNPsCS). The extracts mainly contained p-coumaric acid (71.88-79.93 µg/g), ferulic acid (19.07-310.71 µg/g), and rutin (8.14-13.31 µg/g). The obtained nanoparticles presented typical FT-IR bands confirming the inclusion of polyphenols from V. thapsus and R. communis and spherical/quasi-spherical morphologies with diameters in the 20.06-37.14 nm range. The nanoparticles (20-200 µg/mL) showed antiproliferative effects in both cell lines, with AuNPsCE being the most potent (IC50 HT29: 110.10 and IC50SW480: 64.57 µg/mL). The AuNPsCS showed the lowest intracellular reactive oxygen species (ROS) generation in SW480 cells. All treatments induced caspase 3/7 activity to a similar or greater extent than 30 mM H2O2-treated cells. Results indicated the suitability of V. thapsus and R. communis extracts to synthesize AuNPs, displaying a stronger antiproliferative effect than AuNPsCS.

10.
Front Nutr ; 9: 890136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719139

RESUMO

Current efforts to prevent dyslipidemia are focused on the development of functional products as an alternative for hypertriglyceridemia management. This study assessed the metabolic effect of the daily consumption of a bean and oats snack bar (BOSB) on hypertriglyceridemia biomarkers among Mexican women. An 8-weeks randomized parallel clinical trial (ID: NCT0496694, https://clinicaltrials.gov/ct2/show/NCT04966494) was conducted with 26 hypertriglyceridemic women allocated to BOSB group (TG = 208.18 ± 56.97 mg/dL) and control group (TG = 182.28 ± 51.39 mg/dL). Only the BOSB group consumed 50 g of the product per day. Fasting blood samples were taken from women with an adherence ≥ 90%. A targeted proteomic analysis with plasma samples of control and BOSB groups were conducted using a human obesity antibody array kit and bioinformatic tools provided by the Ingenuity Pathways Analysis (IPA) software. Serum TG levels in the BOSB group decreased by 37.80% (132.04 ± 27.83 mg/dL) compared with the control group (178.87 ± 32.01 mg/dL); glucose levels decreased by 5.69% in the BOSB group (87.55 ± 3.36 mg/dL). A modest body weight (5%) reduction was also found. Forty proteins were differentially modulated by the BOSB consumption (fold change > 1.2). The proteomic analysis revealed the involvement of BOSB bioactives in prevention of monocytes recruitment and localized inflammatory response, inhibition of pre-adipocyte maturation and adipogenesis, inhibition of hepatic b-oxidation, and potential satiety regulation. These results are promising since the mere intervention with the BOSB reduced serum TG without diet restriction, giving insights for further research in prevention of hypertriglyceridemia.

11.
Food Res Int ; 157: 111244, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761556

RESUMO

Colorectal cancer (CRC) can be either prevented or alleviated using conventional drugs combined with natural treatments. Andean berry (AB, Vaccinium meridionale Sw.) is an underutilized berry with promising anti-inflammatory and antiproliferative effects that could be used to alleviate CRC markers in combination with Aspirin, a well-known CRC preventive drug. This research aimed to evaluate the impact of Aspirin, AB juice (ABJ), and their mixture on colorectal cancer in vitro and in vivo. The treatments (ABJ: 0, 10, 20, and 30 % v/v; Aspirin: 0, 10, 15, and 20 mM; and their combination) were assessed on SW480 cells to test their antiproliferative and pro-apoptotic effect. To evaluate their chemopreventive and chemoprotective effect in vivo, azoxymethane (AOM, 15 mg/kg BW) was used as a chemical inductor of early-stage colon cancer. Balb/c mice (8 weeks' age) were randomly assigned to five groups (n = 6 mice/group): control (no treatment), positive control (AOM-treated mice), AOM + Aspirin (20 mM: 25 mg/kg BW), AOM + ABJ (30 % v/v), and AOM + Aspirin + ABJ (Aspirin: 25 mg/kg BW; ABJ: 30 % v/v). ABJ contained phenolic compounds such as 3,4-dihydroxybenzoic and gallic acids, morin, and rutin. The mixture showed a strongest antiproliferative effect than their counterparts (+10.39-46.23 %). Except for Aspirin (20 mM), the cells were not able to proliferate based on the cloning efficiency test. The mixture was the most effective treatment arresting the cell cycle and increasing G2/M cell population (p < 0.01). Aspirin and ABJ showed mainly intrinsic and extrinsic-mediated apoptotic processes, while the mixture decreased most pro-apoptotic (cytochrome C, DR4, DR5, TNFRSF1A, Bax, and Bad) and anti-apoptotic proteins (Hsp70, Hsp32, and XIAP) compared to the untreated cells. In silico simulations highlighted the interaction between rutin and catalase as the strongest affinity (-10.30 Kcal/mol). ABJ and the mixture decreased aberrant crypt foci in vivo compared to AOM-only treated mice and protected the colonic and liver architecture, this was latter used as a secondary indicator of AOM-metabolic activity. The chemopreventive approach was more effective, related to a prior regulation of cancer-protective mechanisms in vivo, alleviating the AOM-induced damage. The results indicated that Aspirin and ABJ mixtures exhibit antiproliferative and pro-apoptotic effects in SW480 cells inducing mechanisms linked to extrinsic (TNF and TRAIL-mediated apoptosis) and intrinsic (Bax and cytochrome C modulation) pathways. At in vivo levels, the treatments displayed defensive effects against the AOM-induced damage as observed by macroscopic measurements. However, more in vitro, and in vivo approaches are required to completely fulfill the pro-apoptotic, anti-proliferative, and chemopreventive/chemoprotective effects of ABJ.


Assuntos
Anticarcinógenos , Antineoplásicos , Neoplasias do Colo , Vaccinium , Animais , Anticarcinógenos/farmacologia , Antineoplásicos/efeitos adversos , Aspirina/farmacologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/prevenção & controle , Citocromos c , Frutas/metabolismo , Camundongos , Rutina/farmacologia , Proteína X Associada a bcl-2
12.
Food Funct ; 13(8): 4699-4713, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380561

RESUMO

Garambullo (Myrtillocactus geometrizans), endemic fruit from Mexico, contains several bioactive compounds (phenolic compounds, betalains, antioxidant fiber), highlighting it as a good functional food. In this research, the impact of the in vitro gastrointestinal digestion on phytochemical bioaccessibility from garambullo and its antioxidant capacity are studied. The fruit contained previously unidentified phytochemicals in the polar and non-polar extracts (acetone and hexane). The bioaccessibility decreased in the mouth and stomach for flavanones (up to 11.9 and 8.9%, respectively), isoflavones (up to 20.0 and 9.2%, respectively), flavonols (up to 15.2 and 15.7%, respectively), hydroxycinnamic acids (up to 21.7 and 13.1%, respectively), and betalains (up to 10.5 and 4.2%, respectively); hydroxybenzoic acids were increased (up to 752.8 and 552.6%, respectively), while tocopherols increased in the mouth (127.7%) and decreased in the stomach (up to 90.3%). In the intestinal phase, the digestible fraction showed low phytochemicals bioaccessibility, and some compounds were recovered in the non-digestible fraction. The antioxidant capacity decreased in different compartments of the gastrointestinal tract, being higher in the mouth (872.9, 883.6, 385.2, and 631.2 µmol TE per g dw by ABTS, DPPH, ORAC, and FRAP, respectively) and stomach (836.2, 942.1, 289.0, and 494.9 µmol TE per g dw ABTS, DPPH, ORAC, and FRAP, respectively). The results indicate that digestion positively or negatively affects compounds' bioaccessibility depending on their structural family, and the antioxidant capacity decreases but remains higher than other functional foods.


Assuntos
Antioxidantes , Cactaceae , Antioxidantes/farmacologia , Betalaínas/farmacologia , Digestão , Compostos Fitoquímicos/farmacologia
13.
Food Res Int ; 148: 110591, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507736

RESUMO

Extruded polyphenol-rich by-products like mango bagasse (MB) could be used to manufacture functional confections. However, few reports have assessed the extrusion impact on MB polyphenols within a food matrix. This research aimed to evaluate the impact of extrusion on the bioaccessibility, intestinal permeability, and antioxidant capacity of phenolic compounds (PC) from non-extruded and extruded MB-added confections (EMBC and MBC, respectively). The inhibition of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radicals and in silico approaches were used to evaluate the antioxidant capacity. MBC displayed the highest gastric bioaccessibility (%) of xanthones and flavonoids, whereas selective release of gallic acid, mangiferin, and quercetin glucoside was shown for EMBC. Lower PC' apparent permeability coefficients were found in EMBC compared to MB (0.11 to 0.44-fold change, p < 0.05). EMBC displayed the highest antioxidant capacity by the DPPH method for the non-digestible fraction, being mangiferin the highest in silico contributor (-4 kcal/mol). Our results showed that the extrusion process helps release selective phenolics from MBC, which increases their bioaccessibility and intestinal permeability.


Assuntos
Mangifera , Antioxidantes , Doces , Celulose , Permeabilidade
14.
Food Chem ; 365: 130528, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34325350

RESUMO

Mango bagasse (MB) is an agro-industrial by-product rich in bioactive polyphenols with potential application as a functional ingredient. This study aimed to delineate the metabolic fate of monomeric/polymeric MB polyphenols subjected to simulated gastrointestinal digestion. The main identified compounds by LC/MS-TOF-ESI were phenolic acids [gallic acid (GA) and derivates, and chlorogenic acid], gallotannins and derivatives [di-GA (DA) and 3GG-to-8GG], benzophenones [galloylated maclurins (MGH, MDH)], flavonoids [Quercetin (Quer) and (QuerH)] and xanthones [mangiferin isomers]. The bioaccessibility depended on the polyphenols' structure, being Quer, 5G to 8G the main drivers. The results suggested that the gastrointestinal fate of MB polyphenols is mainly governed by benzophenones and gallotannins degalloylation and spontaneous xanthone isomerization in vitro to sustain GA bioaccessibility.


Assuntos
Mangifera , Antioxidantes , Celulose , Extratos Vegetais , Polifenóis
15.
J Food Biochem ; 45(6): e13760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33974285

RESUMO

Andean Berry (Vaccinium meridionale Sw.) is a South American fruit rich in phytochemicals with promising anti-cancer properties as co-adjuvants to nonsteroidal anti-inflammatory drugs such as Aspirin. This study aimed to evaluate the antiproliferative potential of Andean Berry Juice (ABJ) in combination with Aspirin in human SW480 colon adenocarcinoma cells. ABJ primarily contained 3,4-dihydroxybenzoic and chlorogenic acids. The combined treatment of ABJ (IC50 : 30.0 ± 0.11%) and Aspirin (IC50 : 20.0 ± 0.57) exhibited a higher (p < .01) antiproliferative effect than each counterpart. Moreover the same mixture displayed a lower reduced glutathione/oxidized glutathione ratio (GSH/GSSG) than the untreated cells. ABJ-Aspirin combination induced late apoptosis stage without stimulating mitochondrial depolarization and prompted phosphatidylserine relocalization. These results emphasize the antiproliferative potential of bioactive compounds from ABJ and Aspirin combinations. PRACTICAL APPLICATIONS: Natural products such as Andean Berry (V. meridionale Sw.) juice (ABJ) contains antioxidant polyphenols that could reduce the need to use non-steroidal anti-inflammatory drugs, currently employed in cancer treatment, to prevent its side effects. The high abundance of polyphenols from this underutilized berry could stimulate the standardization of its production and industrial exploitation to be transformed into suitable food products delivering natural bioactive compounds with potential anti-cancer effects in vitro.


Assuntos
Adenocarcinoma , Vaccinium , Adenocarcinoma/tratamento farmacológico , Aspirina , Colo , Frutas , Humanos
16.
Foods ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802794

RESUMO

Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.

17.
Food Chem Toxicol ; 151: 112119, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33722603

RESUMO

Underutilized marine food products such as cephalopods' ink could be sources of bioactive compounds providing health benefits. This study aimed to assess the anti-proliferative and anti-inflammatory effects from Octopus vulgaris ink extracts (hexane-, ethyl acetate-, dichloromethane- (DM), and water extracts) using human colorectal (HT-29/HCT116) and breast (MDA-MB-231) cancer cells, and LPS-challenged murine RAW 264.7 cells. Except by ethyl-acetate, all of the extracts exhibited anti-proliferative effects without being cytotoxic to ARPE-19 and RAW 264.7 cells. Among DM fractions (F1/F2/F3), DM-F2 showed the highest anti-proliferative effect (LC50 = 52.64 µg/mL), inducing pro-apoptotic morphological disruptions in HCT116 cells. On RAW 264.7 cells, DM-F2 displayed the lowest nitrites reduction and up-regulation of key-cytokines from the JAK-STAT, PI3K-Akt, and IL-17 pathways. Compared to control, DM-F2 increased IL-4 and decreased NF-κB fluorometric expression in peripheral blood mononuclear cells (PBMCs). Metabolomic analysis of DM-F2 highlighted hexadecanoic acid and 1-(15-methyl-1-oxohexadecyl)-pyrrolidine as the most important metabolites. These compounds also exhibited high in silico binding affinity (-4.6 to -5.8 kcal/mol) to IL-1α, IL-1ß, and IL-2. Results suggested the joint immuno-modulatory and anti-proliferative effect derived from selected compounds of underutilized marine food products such as ink. This is the first report of such biological activities in extracts from O. vulgaris ink.


Assuntos
Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Octopodiformes/química , Animais , Citocinas/metabolismo , Células HCT116 , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metabolômica , Cloreto de Metileno/química , Camundongos , Nitritos/metabolismo , Células RAW 264.7 , Transdução de Sinais
18.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494324

RESUMO

Tepary bean (Phaseolus acutifolius) lectins exhibit differential in vitro and in vivo biological effects, but their gastrointestinal interactions and digestion have not yet been assessed. This work aimed to evaluate the changes of a recombinant Tepary bean lectin (rTBL-1) through an in vitro and ex vivo gastrointestinal process. A polyclonal antibody was developed to selectively detect rTBL-1 by Western blot (WB) and immunohistochemical analysis. Everted gut sac viability was confirmed until 60 min, where protein bioaccessibility, apparent permeability coefficient, and efflux ratio showed rTBL-1 partial digestion and absorption. Immunoblot assays suggested rTBL-1 internalization, since the lectin was detected in the digestible fraction. The immunohistochemical assay detected rTBL-1 presence at the apical side of the small intestine, potentially due to the interaction with the intestinal cell membrane. The in silico interactions between rTBL-1 and some saccharides or derivatives showed high binding affinity to sialic acid (-6.70 kcal/mol) and N-acetylglucosamine (-6.10 kcal/mol). The ultra-high-performance liquid chromatography-electron spray ionization-quantitative time-of-flight coupled to mass spectrometry (UHPLC-ESI-QTOF/MS) analysis showed rTBL-1 presence in the gastric content and the non-digestible fraction after intestinal simulation conditions. The results indicated that rTBL-1 partially resisted the digestive conditions and interacted with the intestinal membrane, whereas its digestion allowed the absorption or internalization of the protein or the derivative peptides. Further purification of digestion samples should be conducted to identify intact rTBL-1 protein and digested peptides to assess their physiological effects.


Assuntos
Permeabilidade da Membrana Celular , Absorção Intestinal , Mucosa Intestinal/metabolismo , Lectinas/metabolismo , Phaseolus/genética , Proteínas Recombinantes/metabolismo , Metabolismo dos Carboidratos , Carboidratos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Imuno-Histoquímica , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lectinas/química , Lectinas/genética , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
19.
J Food Sci ; 86(2): 587-601, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462812

RESUMO

Cancer is a noncommunicable disease of rising worldwide concern. Marine food products such as Octopus vulgaris ink (OI) could be sources of compounds addressing these concerns. This study aimed to evaluate the antimutagenic, cytoprotective, antiproliferative, proapoptotic, and antioxidant capacity of OI extracts on human cancer cell lines (22Rv1, HeLa, A549). The ARPE-19 cell line was used as a reference human cell line to evaluate the ink's cytotoxicity. The water extract exhibited the highest antimutagenic and cytoprotective effect, but the dichloromethane extract (DM) showed the lowest half lethal concentration against 22Rv1 cells. Structural elucidation of purified DM fractions (F1, F2, F3) identified an unreported compound, N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide (OPC). DM-F2 showed high antiproliferative effect (LC50 = 27.6 µg/mL), reactive species modulation, early-apoptosis induction (42.9%), and nuclei disruption in 22Rv1 cells. In silico analysis predicted high OPC affinity with Cyclin D1 (-6.70 kcal/mol), suggesting its potential impact on cell cycle arrest. These results highlight the antimutagenic, cytoprotective, and antiproliferative potential health benefits derived from underutilized marine food products such as OI. Further investigations at in vitro or in vivo levels are required to elucidate mechanisms and health benefits from OI. PRACTICAL APPLICATION: O. vulgaris ink is an underutilized marine natural product that could be a source of biological compounds with potential health benefits such as antioxidant activity and cancer prevention.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Octopodiformes/química , Animais , Antioxidantes/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
20.
Int J Food Sci Nutr ; 72(4): 485-498, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33302731

RESUMO

Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Colo/metabolismo , Moringa oleifera/química , Necrose/tratamento farmacológico , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...